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ABSTRACT 

The Ordinary Least Squares (OLS) method has been the most popular technique for 
estimating the parameters of the multiple linear regression. However, in the presence 
of outliers and when the model includes both continuous and categorical (factor) 
variables, the OLS can result in poor estimates.  In this paper we try to introduce an 
alternative robust method for such a model that is much less influenced by the 
presence of outliers.  A numerical example is presented to compare the performance 
of the OLS, the Re-weighted Least Squares based on the Robust Distance Least 
Absolute Value (RLSRDL1), and the Re-weighted Least Squares based on the Robust 
Distance S/M estimator (RLSRDSM). The latter is the modification of the RDL1.  
The empirical evidence shows that the performance of the RLSRDSM is fairly close 
to the RLSRDL1 up to 20% outliers.  As the percentage of outliers increases to more 
than 20%, the RLSRDSM is slightly better than the RLSRDL1. However, the Robust 
Distance Least Absolute Value (RDL1) estimator posed certain computational 
problems such as degenerate non-unique solutions while the RLSRDSM do not have 
such problem. 
 
Keywords: Outliers, Leverage points, Robust Distance, S/M-estimates, RLSRDL1, 
RLSRDSM 

 

 

INTRODUCTION 

Consider the general multiple linear regression model with additive 
error term: 
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Additional linear model parameters may be added to model (1) when 
some of the independent variables are qualitative.  In this situation, dummy 
predictor variables which only take the values 0 and 1 are incorporated in 
model (1). The model is then extended to cater both continuous and 
categorical variables. 
 

If we have m categorical variables with c1, c2,..., cm levels, then (1) 
becomes: 
 

     
0 1

1 1
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j l
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= + + +∑ ∑                                                                            (2) 

where           
1

( 1)
m

k

k

q C
=

= −∑ and Iil  is either 0 or 1. 

 
The Ordinary Least Squares method (OLS) are often used  in practice 

to estimate the parameters of the model. Nevertheless, the OLS method is 
very sensitive to the presence of outliers.  In order to rectify this problem, a 
robust method which is not sensitive to outliers is put forward. 

  
M-estimation which was proposed by Huber,(1973) is frequently 

used method of robust regression. Armstrong and Frome,(1977) introduced 
the Least Absolute Value (L1) method which  is robust against outliers in the 
y-direction, but does not protect against leverage points, i.e points of which 

( 1ix , 2ix ,…, ipx ) are outlying.  Similar to L1, the M-estimates are still not 

robust to the leverage points. 
 

Rousseeuw,(1984) and Rousseeuw and Yohai,(1984) have introduced 
the Least Median of Squares (LMS),  the Least Trimmed of Squares (LTS)  
and the class of S-estimator that can withstand a positive percentage of 
contaminations including leverage points.  However, these estimators cannot 
simply be applied to model (2)  by treating the dummy variables (Iil) in the 
same way  as the continuous regressors, since this would lead  to a problem 
of singular matrices. 

 
Hubert and Rousseeuw,(1997) introduced the robust distance Least 

Absolute Value (RDL1) method to overcome this problem.  Nevertheless, 
according to Cizek,(2002) and Maronna and Yohai,(1999), RDL1 suffers 
from several problems, such as producing non-singular degenerate solutions 
and underestimating the error variances. 
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In this paper, we propose a Re-weighted LS based on a weighted 
combination between the S-estimates and the M-estimates (RDSM) and 
refer this estimates as RLSRDSM.  The RLSRDSM is based on Weighted 
Least Squares (WLS) to use as an alternative to OLS and RLSRDL1.  Using 
WLS will increase the finite sample efficiency of the estimates.  The weights 
are calculated by using the standardized residuals results from performing  a 
weighted S/M-estimators (RDSM). 
 

We expect that the performance of the proposed method will be close 
to the RLSRDL1, not produce any singular matrices or degenerate solutions. 
 
 

THE ROBUST  RDL1 ESTIMATOR 

Hubert and Rousseeuw,(1997) describe the RDL1 in three stages: 
 

i) Identify leverage points by computing the robust distance via 
minimum volume ellipsoid estimator (MVE). 

ii)    Compute the weighted L1 weights based on the robust distance. 
iii)   Calculate the estimate of the scale of the residuals 

 

Identification of Leverage Points by Minimum Volume Ellipsoid (MVE) 

Let  X = {X1, X2,..., Xn} be a data set in p-dimensions.  The robust location 
estimator T(X) are found by finding  the center of the smallest ellipsoid 
containing half of X, as well as scatter matrix C(X) given by the shape of the 
ellipsoid. Hubert and Rousseeuw,(1997) defined the robust distance as 
follows: 
 

1( ) ( ( )) ( ) ( ( ))
i i i

RD x x T X C X x T X
− ′= − −                                     (3) 

 
where :- 

ix
    

: ( 1ix , 2ix ,…,
ipx )  are the continuous variables. 

X      :  is a data set of explanatory variables with p-dimensions. 
T(X) :  is the center of the smallest ellipsoid covering half of X. 

C(X) : is the  shape of the smallest ellipsoid covering half of X. 

 
T(X) and C(X) are consistent for the underlying parameters as verified by 
Davis,(1992).  The square of the robust distance (RD(Xi))

2 is approximated 
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by 2
Pχ   distribution as n gets large if the xi are observed (rather than 

designed) with a multivariate Gaussian distribution. Hence, observations for 

which (RD(Xi))
2 is larger 2

,P αχ  can be considered as leverage point. 

 

Computation of Weighted L1  based on Robust Distance 

Based on the robust distance RD(Xi), the positive weights ωi, are computed 
and given by: 
 

2
min 1,

( ( ))i

i

p

RD X
ω

 
=  

 
  for   i= 1, 2, ..., n                   (4) 

 
where RD as given in (3) and p is the expected value of chi-square 
distribution already mentioned (it is approximately the number of 
independent variables). The weighted L1 estimators ( , )j lβ γ of model (2) are 

found by minimizing the sum of the weighted absolute values of the 
residuals ( , )i j lr β γ , 

 

1

min ( , )
n

i i j l

i

rω β γ
=

=∑                                                                       (5) 

 

The solution ˆ ˆ( , )β γ can be computed by using the algorithm of the Barrodale 

and Roberts,(1973) and Armstrong and Frome,(1977) which treats the 
continuous and discrete (categorical) variables separately. 
 

Scale of the Residuals for LAV and RDL1. 

The residuals scale is estimated as proposed by Hubert and Rousseeuw, 
(1997) by 

i
i

rmed4826.1ˆ =σ                                                                        (6) 

Where ri is the LAV residual. 
 
The choice of constant 1.4826 (the tuning constant) is to make the estimator 
consistent at Gaussian error. Since the estimate is a weighted L1, by a well 
known property make σ  underestimates the error variability and in some 
situation, one would even encounter s ≡ 0!. As an alternative, Maronna and 
Yohai,(1999) proposed using: 
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675.0/ˆ s=σ =1.4826 s                                                               (7) 
 

where s is the median of the nonnull residuals,  s = med ( 1r , 2r ,…, 1n
r )  

for ri ≠ 0. 
 
Outliers can be detected by flagging the observations whose absolute 

standardized residual
σ̂

ir  are greater than 2.5.  Rousseeuw and Leroy,(2003) 

states that the 2.5 is arbitrary, but quite reasonable because in a Gaussian 
situation there will be very few residuals larger than 2.5σ̂ . 
 

 

RE-WEIGHTED LEAST SQUARES BASED ON RDL1 

Hubert and Rousseeuw,(1997) proposed applying Re-weighted Least 

Squares to the data set of model (2) with weights based on 
σ̂

ir  to increase 

the estimators finite-sample efficiency, where ir  is the RDL1 residual. The 

weight is given by 
 



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    (8) 

 
We refer this estimator as RLSRDL1 (Re-weighted Least Squares 

based on RDL1). In so doing we will be able to employ approximate 
statistical inferences. 
 

The scale estimate or the residual errors of the OLS and RLSRDL1 
are: 
 

                      

1 2

1

ˆ ( 1)
n

OLS i

i

n p q rσ −

=

= − − − ∑                                                   (9)                 
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1

1 2

1 1

ˆ ( 1)
n n

RLSRDL i i i

i i

p q rσ ω ω−

= =

= − − −∑ ∑                                 (10) 

 
respectively. 
 
 

RE-WEIGHTED LEAST SQUARES BASED ON RDSM 

Maronna and Yohai,(1999) introduced S-estimate/M-estimate     
(S/M-estimate) method for fitting linear models with both continuous and 
categorical predictor variables. 

 
The M-estimator in the S/M-estimate was first introduced by Huber 

in 1964 (Lin,1998), and it is a class of estimators that minimize a function 
ρ of the residuals as follows: 

1 1

min ( ) min ( )
n n

i i i

i i

e y xρ ρ β
= =

′= −∑ ∑                                    (11) 

 
where ′

ix  denote the i-th row of the independent variables matrix X. 

 
This estimator is called the M-estimator, and it is a maximum 

likelihood estimators when the error distribution is chosen appropriately (i.e. 
choosing the appropriate objective function that is optimal with respect to 
the distribution of the error term). 

 
The S-estimate was introduced for the first time by Rousseeuw and 

Yohai,(1984) as the method of estimation that can make a specified scale 
estimator to have minimum value, and can be defined as: 

 
ˆ = arg min

S
β

β S(β)                                                      (12) 

 
where S(β)  is a certain type of M-estimate of the scale of the residuals 

( ) ( )1 n
r β ,...,r β as given by Rousseeuw and Leroy,(2003), and have  

essentially asymptotic performance the same as M-estimators, but with high 
breakdown point, where: 
 

1

1
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S/M-estimates uses S-estimate for the continuous variables and for 
the categorical variables uses M-estimate with a least absolute deviation (L1) 
influence function, depending on the fact that there is no leverage points 
among the categorical predictor variables. 
 

In this paper, we proposed a Re-weighted Least Squares based on 
RDSM. The RDSM is computed in three stages similar to that of Hubert and 
Rousseeuw,(1997). The identification technique of the leverage points is the 
same like the RDL1.  Once the RD(xi) is identified, the weight ωi is 
determined by Equation (4) and then used the weights in Equation (5).  The 
weighted S/M estimators ( , )

j l
β γ  of model (2) are found by minimizing the 

sum of the weighted S/M values of the residuals ),( ljir γβ instead of the 

weighted absolute values of residuals, as given  in Equation (5).  The RDSM 
residuals are then computed to obtain the residual scale as in Equation (7).  
The weighting scheme proposed by Hubert and Rousseew,(1997) in 
Equation (8) is then computed and used for the Re-weighted Least Squares 
based on RDSM. 

 
 

A NUMERICAL EXAMPLE 

In this section, we consider two data sets for assessing the 
performance of the RLSRDSM. 

 

Wagner Data 

Wagner Data Set which has been analyzed by Wagner,(1994), Hubert and 
Rousseeuw,(1997), Maronna and Yohai,(1999) and S-PLUS 6 Robust 
Library User’s Guide,(2002) is used. This data presents the rate of 
employment growth(y) corresponding to four continuous explanatory 
variables: 
 

PA: percentage of people engaged in production activities 
HS: higher services 
GPA: growth of PA 
GHS: growth of HS 

 
The rate of employment growth (y) depends also on the geographical region 
and the time period, where the data consist of 21 regions around Hanover in 
three time periods P1= 1979-1982, P2 : 1983-1988, and P3 : 1989-1992. The 
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final model  contain four continuous explanatory variables and two factor 
(categorical) variables. The OLS, RLSRDL1, RLSRDSM were then applied 
to these data. The standardized residuals for each estimator are computed.  
The index plot of the standardized residuals are plotted in Figure 1. 
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Figure1: index plots of the standardized residuals 

 

The results of  Figure 1 show that the OLS cannot detect any outlier. 
On the other hand, only one and Six-teen standardized residuals of 
RLSRDL1 and RLSRDSM respectively which is greater than 2.5. The 
RLSRDSM detects more outliers than the RLSRDL1. We then examined the 
scale, the standard errors and the p-values which are presented in Table 1. 
 

TABLE 1 : The Residual errors s(e), standard errors of parameters estimates and p-value 
 

RLSRDSM RLSRDL1 LS Method  

Pr 
(>|t|) 

Std. 
Error 

Value 
Pr 

(>|t|) 
Std. 

Error 
Value 

Pr 
(>|t|) 

Std.E Value . Coeff. 

0.00 8.12 -59.3 0.23 26.76 32.38 0.84 23.60 4.76 0β (intercept) 

0.00 0.50 1.99 0.15 1.44 2.14 0.20 1.49 1.95 1β  (Period1) 

0.00 0.36 2.83 0.23 1.06 1.31 0.33 1.10 1.09 2β (Period2) 

0.00 0.53 6.18 0.03 1.91 4.28 0.00 1.72 6.15 3β (GHS) 

0.00 0.74 5.19 0.50 2.64 1.79 0.02 2.11 5.09 4β β4(HS) 

0.00 0.20 2.35 0.55 0.58 -0.35 0.90 0.56 0.07 5β (GPA) 

0.00 0.24 1.60 0.19 0.74 -0.98 0.56 0.71 -0.41 6β (PA) 

0.00 2.02 11.13 0.17 5.56 -7.81 0.37 5.59 -5.11 7β (Region1) 

0.00 1.24 12.88 0.96 3.58 -0.17 0.55 3.51 2.14 8β (Region2) 
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TABLE 1(continued): The Residual errors s(e), standard errors of parameters estimates and p-value 
 

RLSRDSM RLSRDL1 LS Method  

Pr 
(>|t|) 

Std. 
Error 

Value 
Pr 

(>|t|) 
Std. 

Error 
Value 

Pr 
(>|t|) 

Std.E Value . Coeff. 

0.00 0.54 4.73 1.00 1.65 0.01 0.45 1.59 1.21 9β (Region3) 

0.00 0.35 1.52 0.37 1.19 -1.09 0.92 1.13 -0.12 10β (Region4) 

0.00 0.29 -3.57 0.13 0.98 -1.52 0.01 0.87 -2.51 11β (Region5) 

0.00 0.22 -0.89 0.91 0.79 -0.09 0.30 0.73 -0.77 12β (Region6) 

0.93 0.42 0.04 0.02 1.27 -3.17 0.06 1.26 -2.47 13β (Region7) 

0.35 0.21 0.20 0.09 0.52 0.92 0.36 0.48 0.45 14β (Region8) 

0.00 0.12 0.50 0.92 0.39 -0.04 0.93 0.40 -0.03 15β (Region9) 

0.01 0.12 -0.36 0.53 0.41 0.26 0.62 0.43 0.21 16β (Region10) 

0.57 0.12 -0.07 0.83 0.31 -0.07 0.77 0.32 -0.10 17β  (Region11) 

0.01 0.11 0.34 0.37 0.35 0.32 0.10 0.34 0.57 18β  (Region12) 

0.00 0.11 -0.58 0.88 0.34 -0.05 0.62 0.35 -0.17 19β  (Region13) 

0.53 0.13 0.08 0.11 0.33 -0.53 0.38 0.31 -0.27 20β  (Region14) 

0.00 0.11 -1.50 0.72 0.33 -0.12 0.36 0.33 -0.31 21β  (Region15) 

0.00 0.13 0.42 0.27 0.39 0.44 0.34 0.41 0.40 22β  (Region16) 

0.04 0.08 -0.17 0.43 0.27 0.22 0.92 0.25 -0.03 23β  (Region17) 

0.00 0.15 -0.67 0.14 0.42 0.64 0.24 0.43 0.51 24β  (Region18) 

0.02 0.06 -0.16 0.90 0.21 -0.03 0.89 0.21 -0.03 25β  (Region19) 

0.00 0.15 -0.91 0.06 -1.97 -0.96 0.00 0.45 -1.37 26β  (Region20) 

1.66 5.999 6.229 S(e) 

 
The results of Table 1 show that the RLSRDSM does a credible job.  

The RLSRDSM method outperforms the RLSRDL1 and OLS by possessing 
the lowest residual standard errors, lowest standard errors of the parameter 
estimates and the most number of significant parameters. 

 

Salary Survey Data 

Our second example presents a Salary Survey Data wchich is taken from 
Chatterjee, Hadi, and Price,(2000). The response variable of this data is 
Salary (S), and the predictors are : (1) experience (X) measured in years; (2) 
education (E), coded as 1 for those completing a high school (H.S.) diploma, 
or 2 for bachelor degree (B.S.), and 3 for advanced degree; and (3) 
management (M), which is coded as 1 for a person with management 
responsibility and 0 otherwise.  The Salary Survey model will then be: 
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                      0 1 1 2 1S  X  E1  E2  Mβ β γ γ δ ε= + + + + +                             (14) 

 
Table 2 presents the summary statistics such as the standard errors of the 
parameter estimates, the p-values and the scale estimates, s(e). 
 

TABLE 2: The Residual errors s(e), standard errors of parameters estimates and p-value 
 

 LS RLSRDL1 RLSRDSM 

 Value Std.E Pr(>|t|) Value Std.E Pr(>|t|) Value Std.E Pr(>|t|) 

0β  11031.81 383.22 0.00 11199.98 33.75 0.00 9204.14 45.88 0.00 

1β  546.18 30.5192 0.00 498.32 2.65 0.00 498.14 2.30 0.00 

2β  -2996.21 411.75 0.00 -1740.58 45.63 0.00 257.02 49.34 0.00 

3β  147.82 387.66 0.70 -356.47 42.00 0.00 1640.80 37.94 0.00 

4β  6883.53 313.92 0.00 7041.07 43.97 0.00 9038.20 35.05 0.00 

S(e) 1027 73.88 70.09 

 
We observe from Table 2 that the RLSRDSM produce the smallest scale 
estimates followed by the RLSRDL1 and OLS. The p-values of the three 
estimators are fairly close.  However, the standard errors of the OLS is much 
larger than the RLSRDL1 and RLSRDSM.  Although RLSRDSM produces 
lower scale or residual standard errors than the RLSRDL1, we observe that 
the standard errors of the RLSRDL1 estimates are reasonably close to the 
RLSRDSM.  We have not  pursued the analysis of the examples to a final 
conclusion, but a reasonable interpretation  up to this point is that the 
performance of the RLSRDSM is slightly better than the RLSRDL1. These 
two estimators outperform the OLS estimator. 
 
 

SIMULATION STUDY 

In this section, a simulation study will be discussed in order to 
compare the OLS, RLSRDL1, and RLSRDSM.  We have performed many 
simulation scenarios and due to space constraints, we include only 3 tables. 
The conclusions of other results are consistent and are not presented due to 
space limitations.  All computer codes and results can be requested from the 
authors. 
 

In this section, we consider three models namely the models with 
1,3, and 5 continuous variables. The variables are generated according to 
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Rousseeuw and Leroy,(2003) simulation study. The explanatory variables 
are generated such that (0,100)iX ~ N .  The models with 3 and 5 continuous 

variables respectively can be constructed as: 
 

3 4

0
1 1

i j ij l il i

j l

y x Iβ β γ ε
= =

= + + +∑ ∑                                                 (15) 

5 4

0
1 1= =

= + + +∑ ∑i j ij l il i

j l

y x Iβ β γ ε                                                   (16) 

 

where 0β  is the intercept,
 j

β with j = 1,2,…,p are the coefficients of the 

linear model, i = 1,2,…,n is the index, and iε  is the error term, where 
2~ (0, ).

i
Nε σ  

 
The 4 categorical variables have been generated as factor variables 

with five levels resulting in four binary dummy variables, for each 
categorical variable. 

 
On the other hand, for the simple case of one continuous and one 

categorical variable, the continuous and categorical variables are generated 
by following Cizek,(2002) simulations, as Normal and Binomial variables 

respectively, i.e. = 1,...,i n ; ~ (0,10)iX N instead of )100,0(~ NX i ; and 

)5.0,1(~1 BiI i  as a factor variable; 

 

iiii IXy εγβ +++= 10                                                             (17) 

 

We used a standardized version of iX  following Rousseeuw and 

Leroy,(2003) where, 
 

1 4826

ij kj
k

ij

fj kj
f k

x med x
z

. med x med x

−
=

−
                                                (18) 

 

where 1 1j = ,..., p - , 1≡≡ ipip xz  for the intercept term, and y can be 

standardized in the same manner. 
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The error term is generated as Normal, Student's-t, and Exponential 
distribution for the simple case (one continuous and one categorical).  Error 
term is distributed first as Normal, then as student's-t with three degrees of 
freedom, and finally with Exponential distribution with parameter one, i.e. a 
distribution with heavy tails. 
 

The population regression models for models (15),(16), and (17) are 
such that: 

 

                
14321543210 ========== γγγγββββββ

 
as suggested by Rousseeuw and Leroy,(2003). 
 

For models (15),(16), and (17), we consider three cases of generated 
data, X and y without outlying observations, this case is called 
(XYNORMAL).  Then contamination of the data was commenced.  At each 
step, ‘good’ observations were deleted and replaced with ‘bad’ observations. 
The contaminated data with percentage of outliers only in the y direction is 
refer as YOUTLIER while contaminated data with percentage of leverage 
points is refer as XLEVERAGE.  The contaminant data points are generated 
from normal distribution with different mean and different variances.  In the 
YOUTLIER case, the response was contaminated with data values 
distributed as N(100,10). Similarly, the contaminated explanatory variables 
were generated from normal distribution, that is N(100,100). 
 

Performance Measures 

Several performance and summary measures over the two-hundred iterations 
(m=200) were computed: 
 

i. The Mean Estimated Value : 

                        MEV =
j

β   =  
m

1
 ∑

=

m

k

k

j

1

)(β̂                                                (19) 

 

ii. Variance of  jβ̂ : 

     Var ( jβ̂ ) = 
m

1
 ∑

=

m

k

k

j

1

)(ˆ(β - 
j

β )2                                          (20) 
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iii. The Bias resulting from using jβ̂  to estimate jβ : 

                        (
j

β - jβ )                                                                           (21)  

 

iv. The Mean Square Error (MSE ( jβ )) 

MSE( jβ̂ ) = (
j

β - jβ )2 +  
m

1
 ∑

=

m

k

k

j

1

)(ˆ(β - 
j

β )2                  (22) 

The Root Mean Square Error RMSE 

The Root Mean Square Error (RMSE) is given by the square root of the 
MSE, i.e. 

 

                           RMSE = [MSE( jβ̂ )]1/2                                                   (23) 

 
Only RMSE will be tabulated to represent the performance of each method 
tested. This measure sums up and summarizes all other performance 
measures. Due to space constraints, we only consider 20% outliers for model 
(18) and 10%, 20%, 30%, for models (15) and (16). 
 
Table 3, Table 5 and Table 7 summarizes the RMSE of the coefficients and 
scale for the three methods tested under the given simulation conditions.  In 
order to get a better picture, the performance of the three estimators are 
evaluated by using the sum ranks of their RMSE’s. An estimator with lower 
sum ranks indicates a better performance than an estimator with higher sum 
ranks. The sum ranks of each estimator are presented in Table 4, Table 6 and 
Table 8. 

 
TABLE 3: RMSE values under 20% contamination percentage 

 
( 0 , 1 )iε ~ N  ( 3 )iε ~ t  ( 1 )iε ~ E X P  
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R
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X
Y

N
O

R
M

A
L

 

0β
 

0.75003 0.75195 0.74954 0.73718 0.75141 0.75288 0.24407 0.01816 0.00101 

1β  0.00430 0.00129 0.00095 0.03008 0.01739 0.01430 0.00170 0.00619 0.00499 

γ  0.74969 0.74768 0.74751 0.74892 0.741662 0.74598 0.76566 0.75582 0.75508 

σ  0.03146 0.04328 0.07960 0.71061 0.09661 0.02607 0.01433 0.38732 0.41063 
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TABLE 3 (continued): RMSE values under 20% contamination percentage 

 
( 0 , 1 )iε ~ N  ( 3 )

i
ε ~ t  ( 1 )iε ~ E X P  
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Y
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U
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L
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0β
 

1.24918 0.74840 0.75032 1.26357 0.72664 0.74566 2.04588 0.16196 0.14513 

1β  0.02610 0.00222 0.00094 0.01612 0.01369 0.01530 0.02974 0.00866 0.01078 

γ  0.71499 0.74597 0.74594 0.71718 0.74242 0.73711 0.72838 0.75289 0.75208 

σ  3.25081 0.00349 0.00921 3.42822 0.27621 0.24105 2.84881 0.18742 0.21388 

X
L

E
V

E
R

A
G

E
 0β 0.78779 0.76492 0.77265 0.78276 0.77025 0.78697 0.19978 0.07645 0.05109 

1β  0.97779 0.15658 0.27025 0.97470 0.24359 0.38750 0.97463 0.08796 0.25721 

γ  0.74760 0.74952 0.74351 0.74816 0.73562 0.74123 0.76392 0.75348 0.74787 

σ  0.45379 0.04797 0.01800 0.98757 0.28918 0.14536 0.44553 0.27153 0.22984 

 
 

TABLE 4: The sum ranks values of RMSE under 20% contamination percentage 
 

( 0 , 1 )iε ~ N  ( 3 )
i
ε ~ t  ( 1 )iε ~ E X P  

CASE Coef. OLS RLSRDL1 RLSRDSM OLS RLSRDL1 RLSRDSM OLS RLSRDL1 RLSRDSM 

X
Y

N
O

R
M

A
L

 

0β  1 3 2 1 2 3 3 2 1 

1β  3 2 1 3 2 1 1 3 2 

γ  3 2 1 3 1 2 3 2 1 

σ  1 2 3 2 3 1 1 2 3 

Sum  8 9 7 9 8 7 8 9 7 

Y
O

U
T

L
IE

R
 0β  3 1 2 3 1 2 3 2 1 

1β  3 2 1 3 1 2 3 1 2 

γ  1 3 2 1 3 2 1 3 2 

σ  3 1 2 3 2 1 3 1 2 

Sum  10 7 7 10 7 7 10 7 7 

X
L

E
V

E
R

A
G

E
 

0β  3 1 2 2 1 3 3 2 1 

1β  3 1 2 3 1 2 3 1 2 

γ  2 3 1 3 1 2 3 2 1 

σ  3 2 1 3 2 1 3 2 1 

Sum  11 7 6 11 5 8 12 7 5 

 
Let us first focus to Tables 3 and Table 4 for model with one continuous and 
one categorical variable.  Several interesting points emerge from these 
tables.   For the clean data (without outlying observation), the OLS and the 
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RLSRDSM are reasonably close to each other. In this situation The 
RLSRDL1 is slightly inferior than the other two estimators.  However, as the 
percentage of outliers increases, the OLS immediately affected by outliers.  
The RMSEs and the sum ranks of the OLS is the largest among the three 
estimators.  The performance of the RLSRDSM is close to the RLSRDL1 at 
20% outliers in the case of one continuous and one categorical variable, 
irrespective of their error distributions. 

 
 

TABLE 5: RMSE values for model with 3Continuous and 4Categorical variables 
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0β

 

1β

 

2β

 

3β
 

1γ

 

2γ

 

3γ

 

4γ

 

X
Y

N
O

R
M

A
L

 

0% 

OLS 0.20665 0.00011 0.00015 0.00020 0.99458 0.98847 1.00951 1.20459 

RLSRDL1 0.20438 0.00590 0.01035 0.02486 0.99931 0.98783 1.01252 1.20841 

RLSRDSM 0.20314 0.01094 0.01470 0.01448 0.99154 0.98683 1.00706 1.20666 

Y
O

U
T

L
IE

R
 

10% 

OLS 0.79268 0.00002 0.00009 0.00044 0.99674 1.31321 0.92543 0.95491 

RLSRDL1 0.20262 0.00009 0.00015 0.00017 0.99894 0.99206 1.00880 1.20422 

RLSRDSM 0.20828 0.00009 0.00017 0.00018 0.99790 0.98976 1.00841 1.20539 

20% 

OLS 1.79184 0.00023 0.00014 0.00060 0.98125 1.48910 1.13824 1.07725 

RLSRDL1 0.21016 0.00009 0.00014 0.00019 0.99936 0.99187 1.01094 1.20625 

RLSRDSM 0.21062 0.00009 0.00015 0.00019 0.99955 0.99178 1.01046 1.20654 

30% 

OLS 2.79276 0.00006 0.00013 0.00047 0.73511 1.07584 1.04698 1.33081 

RLSRDL1 0.20240 0.00010 0.00012 0.00015 1.00990 0.99371 1.00720 1.20623 

RLSRDSM 0.27715 
0.00000

1 
0.00009 0.00048 0.73477 0.10764 0.10463 0.13307 
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TABLE 5(continued): RMSE values for model with 3Continuous and 4Categorical variables 
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0β
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3β

 

1γ

 

2γ

 

3γ

 

4γ

 

X
L

E
V

E
R

A
G

E
 

10% 

OLS 20.82304 0.28954 0.29550 0.30326 4.97703 0.16736 2.37686 1.47411 

RLSRDL1 0.20960 0.00019 0.00008 0.00016 0.99365 0.99112 1.00678 1.20550 

RLSRDSM 0.20668 0.00016 0.00015 0.00021 0.99165 0.99159 1.00684 1.20572 

20% 

OLS 32.13253 0.46478 0.44760 0.45177 0.41127 6.85260 1.01324 3.52442 

RLSRDL1 0.21389 0.00014 0.00009 0.00012 0.99857 0.98973 1.00879 1.20709 

RLSRDSM 0.21056 0.00010 0.00014 0.00018 0.99976 0.99124 1.00952 1.20638 

30% 

OLS 37.4465 0.59365 0.57408 0.56676 3.79062 0.16589 0.56695 0.17105 

RLSRDL1 4.46823 0.05837 0.05544 0.05772 1.66615 0.85646 0.89773 0.93365 

RLSRDSM 1.60140 0.01835 0.01781 0.01423 1.08096 1.32545 0.83013 1.19472 

 
 
Let us now focus to the results in Table 5 and Table 6 for model with three 
continuous and four categorical variables. As can be expected, similar 
results are obtained as with model with one continuous and one categorical 
variable in the case of clean data.  In this situation, the OLS and the 
RLSRDSM are equally good and their results are superior than the 
RLSRDL1 .  It is interesting to point out that the OLS is the least affected by 
outliers up to 10% with the RLSRDL1 being the next least affected 
estimator.  However, the RLSRDL1 is reasonably close to the RLSRDSM up 
to 20% outliers and their performances are superior than the OLS.  The 
RLSRDSM is the most efficient estimator followed by the RLSRDL1 and 
OLS at 30% outliers.  By looking at Tables 7 and Table 8 for model with 
five continuous and four categorical variables, reveal that the OLS and the 
RLSRDSM estimates are consistently close to each other for clean data. 
 

TABLE 6: The sum ranks values of RMSE for model with 3Continuous and 4Categorical variables 
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0% 

OLS 3 1 1 1 2 3 2 1 14 

RLSRDL1 2 2 2 3 3 2 3 3 20 

RLSRDSM 1 3 3 3 1 1 1 2 15 
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TABLE 6 (continued): The sum ranks values of RMSE for model with 3Continuous and 4Categorical 
variables 
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Sum 
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10% 

OLS 3 1 1 3 1 3 1 1 14 

RLSRDL1 1 2 2 1 3 2 3 2 16 

RLSRDSM 2 2 3 2 2 1 2 3 17 

20% 
OLS 3 2 1 2 1 3 3 1 14 

RLSRDL1 1 1 1 1 2 2 2 2 12 

RLSRDSM 2 1 2 1 3 1 1 3 14 

30% 
OLS 3 2 3 2 2 3 3 3 21 

RLSRDL1 1 3 2 1 3 2 2 2 16 

RLSRDSM 2 1 1 3 1 1 1 1 11 

X
L

E
V

E
R

A
G

E
 

10% 

OLS 3 3 3 3 3 1 3 3 22 

RLSRDL1 2 2 1 1 2 2 1 1 12 

RLSRDSM 1 1 2 2 1 3 2 2 14 

20% 

OLS 3 3 3 3 1 3 3 3 22 

RLSRDL1 2 2 1 1 2 1 1 2 12 

RLSRDSM 1 1 2 2 3 2 2 1 14 

30% 
OLS 3 3 3 3 3 1 1 1 18 

RLSRDL1 2 2 2 2 2 2 3 2 17 

RLSRDSM 1 1 1 1 1 3 2 3 13 

 
 
However, as the percentage of outliers increases, the OLS is immediately 
affected by outliers.  The presence of outliers in the data changes the 
situation dramatically.  In this situation, the  OLS has the largest RMSE and 
the largest sum ranks values as the percentage of outliers increases.   It is 
interesting to note the results of Tables 7 and Table 8.  The performance of 
the RLSRDL is reasonably close to the RLSRDSM when the percentage of 
outliers is up to 20% and when the outliers are in the x and y -directions.   
On the other hand, the RLSRDL1 estimates emerge to be conspicuously 
more efficient than the other two estimators at 30% outliers in the y 
direction.  Nonetheless, the RLSRDSM is more efficient than the RLSRDL1 
at 30% outliers in the x- direction evident by its smallest sum ranks values. 
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TABLE 7: RMSE values for model with 5Continuous and 4Categorical variables 
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3γ

 

4γ

 

X
Y

N
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R
M
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0% 

OLS 0.20455 0.00000 0.00008 0.00005 0.00001 0.00001 1.01318 0.99834 0.99941 1.19958 

RLSRDL1 0.20464 0.00003 0.00005 0.00006 0.00009 0.00002 1.01799 1.00053 1.00159  

RLSRDM 0.20423 0.00002 0.00001 0.00002 0.00005 0.00000 1.01407 1.00264 1.00321  

Y
O

U
T

L
IE

R
 

10% 

OLS 0.79273 0.00011 0.00009 0.00027 0.00012 0.00054 1.00763 1.32066 0.91947 0.94560 

RLSRDL1 0.20013 0.00006 0.00005 0.00001 0.00011 0.00006 1.01618 0.99840 1.00205 1.19475 

RLSRDSM 0.20721 0.00009 0.00008 0.00002 0.00007 0.00008 1.01440 0.99646 1.00248 1.19759 

20% 

OLS 1.78988 0.00040 0.00023 0.00043 0.00029 0.00012 1.01292 1.49207 1.13315 1.07231 

RLSRDL1 0.19647 0.00008 0.00010 0.00004 0.00013 0.00006 1.01820 1.00221 1.00296 1.19735 

RLSRDSM 0.19955 0.00008 0.00011 0.00005 0.00010 0.00007 1.01779 1.00086 1.00234 1.19821 

30% 

OLS 2.80291 0.00004 0.00026 0.00028 0.00054 0.00036 0.75206 1.07435 1.05195 1.32101 

RLSRDL1 0.12154 0.00004 0.00009 0.00004 0.00006 0.00003 0.98851 1.00544 1.01045 1.20942 

RLSRDSM 2.80025 0.00005 0.00027 0.00029 0.00057 0.00037 0.75099 1.07390 1.05215 1.32302 

X
L

E
V

E
R

A
G

E
 

10% 

OLS 31.5544 0.39623 0.36605 0.37130 0.37749 0.38051 7.06475 1.90489 4.00353 1.54586 

RLSRDL1 0.20391 0.00011 0.00003 0.00011 0.00001 0.00006 1.01224 0.99834 0.99802 1.19877 

RLSRDSM 0.20402 0.00001 0.00008 0.00004 0.00005 0.00001 1.01539 0.99915 0.99946 1.19868 

20% 

OLS 45.49237 0.56627 0.56087 0.52574 0.54875 0.57279 0.67560 10.40737 1.14265 4.32376 

RLSRDL1 0.21062 0.00001 0.00003 0.00011 0.00005 0.00002 1.01750 1.00028 1.00241 1.19919 

RLSRDSM 0.49041 0.00140 0.00337 0.00022 0.00204 0.00209 1.22202 0.81376 1.01277 1.24072 

30% 

OLS 50.8405 0.70328 0.64544 0.64992 0.65832 0.66921 4.18745 1.21691 0.83202 0.49696 

RLSRDL1 31.6677 0.39952 0.35578 0.35497 0.37545 0.36902 3.99434 2.04105 0.40710 0.33036 

RLSRDSM 19.4142 0.24411 0.21038 0.22716 0.22917 0.22395 2.81532 0.53308 0.14868 0.50932 

 
 

Table 8: Sum ranks values of RMSE for model with 5Continuous and 4Categorical variables 
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0% 

OLS 2 1 3 2 1 2 1 1 1 1 15 

RLSRDL1 3 3 2 3 3 3 3 2 2 0 24 

RLSRDM 1 2 1 1 2 1 2 3 3 0 16 
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TABLE 8 (continued): Sum ranks values of RMSE for model with 5Continuous and 4Categorical 
variables 
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10% 
OLS 3 3 3 3 3 3 1 3 1 3 26 

RLSRDL1 1 1 1 1 2 1 3 2 2 2 16 

RLSRDSM 2 2 2 2 1 2 2 1 3 1 18 

20% 
OLS 3 2 3 3 3 3 1 3 3 1 25 

RLSRDL1 1 1 1 1 2 1 3 2 2 2 16 

RLSRDSM 2 1 2 2 1 2 2 1 1 3 17 

30% 
OLS 3 2 3 3 3 3 1 3 3 1 25 

RLSRDL1 1 1 1 1 2 1 3 2 2 2 16 

RLSRDSM 2 1 2 2 1 2 2 1 1 3 17 

X
L

E
V

E
R

A
G

E
 10% 

OLS 3 3 3 3 3 3 3 3 3 3 30 

RLSRDL1 1 2 1 2 1 2 1 1 1 2 14 

RLSRDSM 2 1 2 1 2 1 2 2 2 1 16 

20% 
OLS 3 3 3 3 3 3 3 3 3 3 30 

RLSRDL1 1 1 1 2 1 2 1 2 1 1 13 

RLSRDSM 2 2 2 1 2 1 2 1 2 2 17 

30% 
OLS 3 3 3 3 3 3 3 2 3 2 28 

RLSRDL1 2 2 2 2 2 2 2 3 2 1 20 

RLSRDSM 1 1 1 1 1 1 1 1 1 3 12 

 
 

CONCLUSION 

The main focus of this paper is to propose an alternative approach to 
deal with regression models having both continuous and categorical 
variables. We have considered the RLSRDSM in this regard.  The empirical 
studies and simulation experiments show that the OLS is easily affected by 
outliers.  The RLSRDSM is reasonably close to the RLSRDL1 up to 20% 
outliers for model having one continuous and one categorical variable and 
model with three continuous and four categorical variables.  In the case of 
five continuous and four categorical variables, the RDLSRDL1 is the most 
efficient estimator up to 30% outliers in the y-direction.  The result of this 
preliminary studies suggest that the RLSRDSM is slightly better than the 
RLSRDL1 when the percentage of outliers is at 30%. The RLSRDSM 
estimator has no computational problems, and do not produce any singular 
matrices or degenerate solutions while RLSRDL1 faces these problems. 
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